Limits at Infinity

When graphing a function, we are interested in what happens the values of the function as x becomes very large in absolute value. For example, if $f(x)=1 / x$ then as x becomes very large and positive, the values of $f(x)$ approach zero.

$$
\begin{array}{rrrr}
f(100)= & f(1,000)= & f(10,000)= & f(1,000,000)= \\
f(-100)= & f(-1,000)= & f(-10,000)= & f(-1,000,000)=
\end{array}
$$

We say

$$
\lim _{x \rightarrow \infty} 1 / x=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} 1 / x=0
$$

Definition Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large or equivalently if for any number ϵ, there is a number M so that for all $x>M,|f(x)-L|<\epsilon$.

If f is defined on an interval $(-\infty, a)$, then we say

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large and negative or equivalently
if for any number ϵ, there is a number N so that for all $x<N,|f(x)-L|<\epsilon$.
Note The symbol ∞ here does not represent a number, rather the symbol $\lim _{x \rightarrow \infty}$ means the limit as x becomes increasingly large.

Example Consider the graph of the function shown below. Judging from the graph, find are the limits

$$
\lim _{x \rightarrow \infty} f(x)=
$$

We can see from the above graph that if $\lim _{x \rightarrow \infty} f(x)=L$, then the graph get closer and closer to the line $y=L$ as x approaches infinity.

Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either:

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Example What are the horizontal asymptotes of the graph of $y=\frac{x^{3}-2}{|x|^{3}+1}$ shown above?

We saw above that

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

Example Find the following limits

$$
\lim _{x \rightarrow \infty} \frac{2 x+1}{x-5} \text { and } \lim _{x \rightarrow-\infty} \frac{2 x+1}{x-5}
$$

Most of the usual limit laws hold for infinite limits with a replaced by ∞ or $-\infty$. The laws are listed below for reference :

Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist (meaning they are finite numbers). Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) ;$
(the limit of a sum is the sum of the limits).
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$;
(the limit of a difference is the difference of the limits).
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$;
(the limit of a constant times a function is the constant times the limit of the function).
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$;
(The limit of a product is the product of the limits).
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$;
(the limit of a quotient is the quotient of the limits provided that the limit of the denominator is not 0)
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, where n is a positive integer (we see this using rule 4 repeatedly).
7. $\lim _{x \rightarrow a} c=c$, where c is a constant (easy to prove and easy to see from the graph, $y=c$).
8. $\lim _{x \rightarrow a} x=a$, (not difficult to prove from the definition and easy to see from the graph, $y=x$)
9. $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ assuming that the $\lim _{x \rightarrow a} f(x)>0$ if n is even.

Using 9, 6 and 10, we get;
Theorem If $r>0$ is a rational number, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0 .
$$

If $r>0$ is a rational number such that x^{r} is defined for all x, then

$$
\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

Method For Rational Functions \mathscr{O}

We can use the above theorem to evaluate limits of rational functions at ∞ and $-\infty$. We divide both the numerator and denominator by the highest power of x in the denominator.
Example Evaluate

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x+1}{3 x^{2}-1} \text { and } \lim _{x \rightarrow-\infty} \frac{2 x^{2}+x+1}{3 x^{2}-1}
$$

Find the vertical and horizontal asymptotes of the graph of

$$
f(x)=\frac{2 x^{2}+x+1}{3 x^{2}-1} .
$$

Definition Let f be a function defined on some interval (a, ∞). Then we say

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

if the values of $f(x)$ can be made arbitrarily large by taking x sufficiently large or equivalently if for any positive integer N, there is a number M so that for all $x>M, f(x)>N$.
We give similar meaning to the statements

$$
\lim _{x \rightarrow \infty} f(x)=-\infty, \quad \lim _{x \rightarrow-\infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

We have

$$
\lim _{x \rightarrow \infty} x^{n}=\infty, \quad \lim _{x \rightarrow-\infty} x^{2 n}=\infty \quad \lim _{x \rightarrow-\infty} x^{2 n+1}=-\infty
$$

for all positive integers n. Using this and law 10 above, we get that for all positive integers m, n

$$
\lim _{x \rightarrow \infty} x^{\frac{n}{m}}=\infty, \quad \lim _{x \rightarrow-\infty} x^{\frac{2 n}{2 m+1}}=\infty \quad \lim _{x \rightarrow-\infty} x^{\frac{2 n+1}{2 m+1}}=-\infty
$$

Example Evaluate

$$
\lim _{x \rightarrow \infty} \frac{5 x^{3}+x+1}{x^{2}-1}, \quad \lim _{x \rightarrow-\infty} \frac{5 x^{3}+x+1}{x^{2}-1}, \quad \lim _{x \rightarrow \infty} \frac{5 x+1}{x^{2}-4}, \quad \lim _{x \rightarrow-\infty} \frac{5 x+1}{x^{2}-4} \quad \lim _{x \rightarrow-\infty} \frac{5 x^{5}+1}{|x|^{5}-4}
$$

Example Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}+3}}{2 x+5}, \quad \lim _{x \rightarrow-\infty} \frac{\sqrt{3 x^{2}+3}}{2 x+5}, \quad \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-2 x}\right)
$$

Note we can also use the squeeze theorem when calculating limits at ∞.
Example Find

$$
\lim _{x \rightarrow \infty} \cos x, \quad \lim _{x \rightarrow \infty} \frac{\cos x}{x} \quad \lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right), \quad \lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right), \quad \lim _{x \rightarrow-\infty} \frac{5 x+1}{x^{2}+\sin x-4} .
$$

if they exist.

Limits of Polynomials at Infinity and minus infinity

Let

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

be a polynomial function. Then the behavior of $P(x)$ at $\pm \infty$ is the same as that of its highest term. That is

$$
\lim _{x \rightarrow \infty} P(x)=\lim _{x \rightarrow \infty} a_{n} x^{n} \quad \text { and } \quad \lim _{x \rightarrow-\infty} P(x)=\lim _{x \rightarrow-\infty} a_{n} x^{n} .
$$

(To prove this consider the limit $\lim _{x \rightarrow \pm \infty} \frac{P(x)}{a_{n} x^{n}}$.)
Example Find
$\lim _{x \rightarrow \infty} x^{4}+2 x+1, \quad \lim _{x \rightarrow-\infty} 2 x^{3}+x^{2}+1, \quad \lim _{x \rightarrow \infty}-3 x^{5}+10 x^{2}+4562 x+1, \quad \lim _{x \rightarrow \infty}(x-2)^{3}(x+1)^{2}(x-1)^{5}$

Note that we can use the following short cut for calculating limits of rational functions as $x \rightarrow \pm \infty$:

$$
\lim _{x \rightarrow \pm \infty} \frac{a x^{n}+\text { lin. comb. of lower powers }}{b x^{m}+\text { lin. comb. of lower powers }}=\lim _{x \rightarrow \pm \infty} \frac{a x^{n}}{b x^{m}}
$$

where m and n are positive integers.

